Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38639901

RESUMEN

The aim of this study was to evaluate the efficiency of Costus speciosus (Koen ex. Retz.) Sm. in the degradation of crude oil and reduction of mercury (Hg) from the contaminated soil in pot experiments in the net house for 180 days. C. speciosus was transplanted in soil containing 19150 mg kg-1 crude oil and 3.2 mg kg-1 Hg. The study includes the evaluation of plant biomass, height, root length, total petroleum hydrocarbon (TPH) degradation, and Hg reduction in soil, TPH, and Hg accumulation in plants grown in fertilized and unfertilized pots, chlorophyll production, and rhizospheric most probable number (MPN) at 60-day interval. The average biomass production and heights of C. speciosus in contaminated treatments were significantly (p < 0.05) lower compared to the unvegetated control. Plants grown in contaminated soil showed relatively reduced root surface area compared to the uncontaminated treatments. TPH degradation in planted fertilized, unplanted, and planted unfertilized pot was 63%, 0.8%, and 38%, respectively. However, compared to unvegetated treatments, TPH degradation was significantly higher (p < 0.05) in vegetated treatments. A comparison of fertilized and unfertilized soils showed that TPH accumulation in plant roots and shoots was relatively higher in fertilized soils. Hg degradation in soil was significantly (p < 0.05) more in planted treatment compared to unplanted treatments. The fertilized soil showed relatively more Hg degradation in soil and its accumulation in roots and shoots of plants in comparison to unfertilized soil. MPN in treatments with plants was significantly greater (p < 0.05) than without plants. The plant's ability to produce biomass, chlorophyll, break down crude oil, reduce Hg levels in soil, and accumulate TPH and Hg in roots and shoots of the plant all point to the possibility of using this plant to remove TPH and Hg from soil.

2.
Sci Rep ; 14(1): 8863, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632269

RESUMEN

Ethylene vinyl acetate (EVA) copolymers are widely employed as pour point depressants to enhance the flow properties of crude oil. However, EVA copolymers have limitations that necessitate their development. This work investigated the modification of EVA via gamma radiation-induced grafting of butyl acrylate (BuA) monomers and the evaluation of grafted EVA as a pour point depressant for crude oil. The successful grafting of poly(butyl acrylate) p(BuA) onto EVA was verified through grafting parameters, FTIR spectroscopy, and 1H NMR spectroscopy. Treating crude oil with 3000 ppm of (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy yielded substantial reductions in pour point of 24, 21, and 21 °C, respectively. Also, rheological characterization demonstrated improving evidenced by a viscosity reduction of 76.20%, 67.70%, and 71.94% at 25 °C, and 83.16%, 74.98%, and 81.53% at 12 °C. At low dosages of 1000 ppm, the EVA-g-p(BuA) exhibited superior pour point reductions compared to unmodified EVA, highlighting the benefit of incorporating p(BuA) side chains. The grafted EVA copolymers with p(BuA) side chains showed excellent potential as crude oil flow improvers by promoting more effective adsorption and co-crystallization with paraffin wax molecules.

3.
Bioresour Technol ; 400: 130690, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38614150

RESUMEN

Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study. The total protein concentration, acetylcholinesterase, esterase, lipase, alkane hydroxylase activity, surface tension, and emulsification index (EI) were determined at different culture times. The bio-surfactant was identified as glycolipid compound, and the yield was 2.6 ± 0.2 g/L. The nC12 and nC13 of crude oil were completely degraded, and more than 40.0 % of nC14-nC24 was degraded by by A. borkumensis. The results of the microscopic etching model displacement and core flooding experiments showed that emulsification was the main mechanism of EOR. A. borkumensis enhanced the recovery rate by 20.2 %. This study offers novel insights for the development of environmentally friendly and efficient oil fields.

4.
Sci Rep ; 14(1): 9187, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649727

RESUMEN

This study deals with the investigation of the water removal efficiency (WRE) from crude oil using a commercial demulsifier. The impacts of time, demulsifier concentration, and temperature on WRE were experimentally studied. The results implied the fact that temperature plays a substantial role in the demulsification and has a direct correlation with WRE. In addition, while increasing the concentration up to 40 ppm contributed to reaching a higher WRE, it did not have positive effects on efficiency at higher concentrations (overdose) and just led to more demulsifier consumption. The concentration dependence of WRE was also diminished at high temperatures. At higher levels of temperature and concentration, the time required to reach a high WRE was noticeably reduced. In order to generalize the findings of this study, the measured experimental data were employed to design predictive methods for WRE based on two smart soft-computing paradigms, including Multilayer perceptron (MLP) and Gaussian process regression (GPR). Despite the high accuracy of both models, the MLP model presented the best consistencies with experimental data with average absolute relative error and relative root mean squared error of 0.84%, and 0.01%, respectively during the testing (validation) step. Also, a visual description through the contour diagram confirmed the capability of the recently proposed models to describe the physical variations of WRE under various operating conditions. Ultimately, a sensitivity analysis based on the MLP model was undertaken to shed light on the order of significance of operational factors in controlling WRE. Overall, the findings of the current research, in turn, have a satisfactory contribution to the efficient design of the water removal process from crude oil based on demulsifiers.

5.
FEMS Microbiol Ecol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650065

RESUMEN

The overall impact of a crude oil spill into a pristine freshwater environment in Canada is largely unknown. To evaluate the impact on the native microbial community, a large-scale in situ model experimental spill was conducted to assess the potential role of the natural community to attenuate hydrocarbons. A small volume of conventional heavy crude oil (CHV) was introduced within contained mesocosm enclosures deployed on the shoreline of a freshwater lake. The oil was left to interact with the shoreline for 72 h and then free-floating oil was recovered using common oil spill response methods (i.e. freshwater flushing and capture on oleophilic absorptive media). Residual PAH concentrations returned to near pre-oiling concentrations within 2 months, while the microbial community composition across the water, soil, and sediment matrices of the enclosed oligotrophic freshwater ecosystems did not shift significantly over this period. Metagenomic analysis revealed key polycyclic aromatic and alkane degradation mechanisms also did not change in their relative abundance over the monitoring period. These trends suggest that for small spills (<2 L of oil per 15 m2 of surface freshwater), physical oil recovery reduces PAH concentrations to levels tolerated by the native microbial community. Additionally, the native microbial community present in the monitored pristine freshwater ecosystem possesses the appropriate hydrocarbon degradation mechanisms without prior challenge by hydrocarbon substrates. This study corroborated trends found previously (Kharey et al. 2024) toward freshwater hydrocarbon degradation in an environmentally relevant scale and conditions on the tolerance of residual hydrocarbons in situ.

6.
Toxicol Rep ; 12: 375-388, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584719

RESUMEN

Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.

7.
Molecules ; 29(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474696

RESUMEN

Heavy crude oil poses challenges in terms of extraction and transportation due to its high viscosity. In the pursuit of effective methods to reduce viscosity in heavy crude oil, this study investigates the potential of imidazolium chloride ionic liquids with varying alkyl chain lengths as viscosity reducers. The experimental results demonstrate that the addition of 1-dodecyl-3-methylimidazole chloride ([C12-MIM]Cl) leads to a maximum viscosity reduction of 49.87%. Solubility parameters were calculated based on characterization of the average molecular structure of the asphaltenes. The viscosity reduction effect is enhanced when the solubility parameter of the ionic liquid closely matches that of the asphaltene. The initial asphaltene deposition point of heavy crude oil is increased from 63% to 68% with the addition of 150 mg/L [C12-MIM]Cl. Furthermore, the average particle size of asphaltene deposits decreases from 79.35 µm to 48.54 µm. The viscosity of heavy crude oil is influenced by the aggregation of asphaltenes. The ability of ionic liquids, especially those with longer alkyl chains, to disperse asphaltene molecules and reduce viscosity has been confirmed through molecular dynamics and quantum mechanical simulations.

8.
Mar Pollut Bull ; 201: 116280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518574

RESUMEN

The utilization of chemical dispersants as a way of mitigating of oil spills in marine eco-system has been extensively documented worldwide. Hence, in this research we have successfully synthesized two amphiphilic asymmetric Dicaionic Ionic Liquids (DILs). The efficacy of these synthesized DILs as dispersants was assessed using the baffled flask test (BFT). The results indicated a dispersant effectiveness ranging from 47.98 % to 79.76 % for the dispersion of heavy crude oil across various temperature ranges (10-30 °C). These dispersant-to-oil ratios (DOR) were maintained at 3: 100 (V%), showcasing promising dispersant capabilities for mitigating heavy crude oil spills. Additionally, acute toxicity tests conducted on Nile tilapia and Oreochromis niloticus have demonstrated the relatively low toxicity of the IL-dispersants, with Lethal Concentration 50 (LC50) values exceeding 100 ppm after 96 h. This suggests a practically slight toxic effect on the tested fish. In summary, the newly developed IL-dispersants are considered to be conducive to environmentally benign oil spill remediation.


Asunto(s)
Antracenos , Líquidos Iónicos , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Líquidos Iónicos/toxicidad , Tensoactivos/toxicidad , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Petróleo/toxicidad
9.
J Hazard Mater ; 469: 134090, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513439

RESUMEN

Effectively addressing crude oil spills remains a global challenge due to its high viscosity and limited flow characteristics. In this study, we successfully prepared a modified sponge (PCP@MS) by embedding the photothermal material of Co-HHTP and coating the melamine sponge (MS) with low-surface-energy polydimethylsiloxane (PDMS). The PCP@MS exhibited outstanding hydrophobicity with WCA of 160.2° and high oil absorption capacity of 59-107 g/g. The PCP@MS showed high separation efficiency of 99.2% for various oil-water mixtures, along with notable self-cleaning properties and mechanical stability. The internal micro-nano hierarchical structure on the sponge surface significantly enhanced light absorption, synergizing with the photo-thermal conversion properties of Co-HHTP, enabled PCP@MS to achieve a surface temperature of 109.2 °C under 1.0 solar light within 300 s. With the aid of solar radiation, PCP@MS is able to heat up quickly and successfully lowering the viscosity of the surrounding crude oil, resulting in an oil recovery rate of 8.76 g/min. Density functional theory (DFT) calculation results revealed that Co-HHTP featured a zero-gap band structure, rendering advantageous electronic properties for full-wavelength light absorption. This in situ solar-heated absorbent design is poised to advance the practical application of viscous oil spill cleanup and recovery.

10.
J Environ Manage ; 355: 120508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457896

RESUMEN

Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings âˆ¼ 74%, 4 and 5 rings âˆ¼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Suelo/química , Ecosistema , Contaminantes del Suelo/análisis , Hidrocarburos/metabolismo , Microbiología del Suelo
11.
Sci Rep ; 14(1): 6148, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480813

RESUMEN

This study aims to investigate the effects of introducing a 50/50 mixture of silica and magnesium oxide nanoparticles (SNP + MgONP) to the viscosity of Al-Ahdab crude oil (Iraq) at varied concentrations and temperatures. It is observed that the viscosity value drops from 38.49 to 7.8 cP. The highest degree of viscosity reduction is measured to be 56.91% at the maximum temperature of 50 °C and the greatest concentration of 0.4 wt% SM4. The Bingham model can be used to classify the behavior of the crude oil before the Nano-mixture is added. The liquid behavior grew closer to Newtonian behavior once the Nano-mixture was added. Along with a rise in plastic and effective viscosity values, the yield stress value decreases as the concentration of the Nano-mixture increases. The numerical data demonstrate that when the volume proportion of nanoparticles increases, the pressure distribution decreases. Furthermore, as the nanoparticle volume fraction increases, the drag decrease would also increase. SM4 obtains a maximum drag reduction of 53.17%. It is discovered that the sample SM4 has a maximum flow rate increase of 2.408%. Because they reduce the viscosity of crude oil, nanoparticles also reduce the friction factor ratio.

12.
Sci Total Environ ; 920: 170706, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38325493

RESUMEN

This study presents the first documented occurrence of a natural crude oil seep plume associated with river discharge along the Strait of Magellan in southern Patagonia in modern times. Between September and December 2022, hydrocarbon signals were detected using a crude oil sensor integrated into a FerryBox system that traversed the Strait of Magellan and several channels of southern Patagonia, covering approximately 510 km. The highest levels of crude oil signals were observed in the mid-basin of the Strait of Magellan. These signals exhibited a strong negative correlation with sea surface salinity, coinciding with the water discharge from the San Juan River. Notably, during periods of high river discharge, typically exceeding 15 m3 s-1, a distinct crude oil plume was detected moving towards the Magellan Strait. Conversely, when river discharge fell below this threshold, no noticeable crude oil signal was observed. As river discharge decreased and winds intensified during the austral summer, the crude oil signal gradually dissipated. This observation suggests that the dispersion of crude oil becomes limited during periods of low river discharge, as buoyant currents remain confined close to the coast. Historical records indicate that this seep has been releasing hydrocarbons into the Strait of Magellan for at least the past 120 years, implying a long history of chronic crude oil input into this relatively isolated region of the world. This finding shows the potential contribution to the understanding of marine ecosystems dynamics and potential pollutants in poorly studied regions through the use of automated monitoring FerryBox system, enabling both spatial and temporal high-resolution surveys.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38378123

RESUMEN

A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.


Asunto(s)
Perciformes , Petróleo , Animales , Exposición Dietética/efectos adversos , Petróleo/toxicidad , Perciformes/fisiología , Ácidos Grasos , Colesterol
14.
Arch Microbiol ; 206(3): 123, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407586

RESUMEN

In this comprehensive study, we delved into the capabilities of five fungal strains: Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO]) in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the exceptional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust growth, achieving a remarkable 59.1% expansion across the medium's surface, accompanied by distinctive macroscopic traits, including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we conducted experiments in a liquid medium, quantifying CO2 production through gas chromatography, which reached its zenith at day 30, signifying substantial bioconversion with a 38% increase in CO2 production. Additionally, we monitored changes in surface tension using the Du Noüy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m. This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generating valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.


Asunto(s)
Aspergillus flavus , Dióxido de Carbono , Biodegradación Ambiental , Aspergillus niger , Biotecnología
15.
Heliyon ; 10(3): e24994, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318038

RESUMEN

This study was aimed at using in vitro microcosm experiments to assess crude oil degradation efficiency of Acinetobacter junii and Alcanivorax xenomutans isolated along Ghana's coast. Uncontaminated seawater from selected locations along the coast was used to isolate bacterial species by employing enrichment culture procedures with crude oil as the only carbon source. The isolates were identified by means of the extended direct colony transfer method of the Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy (MALDI-TOF MS), as Acinetobacter junii, and Alcanivorax xenomutans. Remediation tests showed that Acinetobacter junii yielded degradation efficiencies of 27.59 %, 41.38 % and 57.47 %. Whereas efficiencies of 21.14 %, 32.18 % and 43.68 % were recorded by Alcanivorax xenomutans representing 15, 30 and 45 days respectively. Consortia of Acinetobacter junii, and Alcanivorax xenomutans also yielded 32.18 %, 48.28 % and 62.07 % for the selected days respectively. Phylogenetic characterization using ClustalW and BLAST of sequences generated from the Oxford Nanopore Sequencing technique, showed that the Ghanaian isolates clustered with Alcanivorax xenomutans and Acinetobacter junii species respectively. An analysis of the sequenced data for the 1394-bp portion of the 16S rRNA gene of the isolates revealed >99 % sequence identity with the isolates present on the GenBank database. The isolates of closest identity were Alcanivorax xenomutans and Acinetobacter junii with accession numbers, NR_133958.1 and KJ147060.1 respectively. Acinetobacter junii and Alcanivorax xenomutans isolated from Ghana's coast under pristine seawater conditions have therefore demonstrated their capacity to be used for the remediation of crude oil spills.

16.
Reprod Toxicol ; 125: 108560, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387710

RESUMEN

The inhalation exposure to crude oil vapor (COV) has been shown to have adverse effects on the placenta and fetal development. The modulatory effects of quercetin (QUE) as a natural phenolic compound with antioxidant properties are promising for the protection of placental structure. This study aimed to investigate the modulatory role of QUE in mitigating histopathological damage, oxidative stress, and biochemical alteration in the placenta of COV-exposed pregnant rats. Forty-eight pregnant rats were divided into eight groups (days 15 and 20) as follows: 1-2) Control groups, 3-4) COV groups, 5-6) COV+QUE groups, and 7-8) QUE-treated groups (50 mg/kg). The inhalation method was used to expose pregnant rats to COV, and QUE was administered orally. On the 15th and 20th days of gestation, placental tissue was analyzed using PAS and H&E staining and immunohistochemistry. The expression of the caspase-3 gene and oxidative stress biomarkers including TAC, CAT, MDA, GPx, and SOD were investigated in the placental tissue. The COV significantly decreased the weight, diameter, and thickness of the placenta as well as the thickness of the junctional zone and labyrinth and the number of trophoblast giant cells in 15- and 20-day-old placentas (P<0.05). Also, COV significantly increased placental expression of caspase-3 and the oxidative stress biomarkers (P<0.05). The administration of QUE along with exposure to COV reduced morphometric and histological alteration, oxidative stress, and caspase-3 expression (P<0.05). Our findings indicated that QUE in COV-exposed pregnant rats can prevent placental histopathological alternations by increasing the activity of the antioxidant system.


Asunto(s)
Placenta , Quercetina , Ratas , Embarazo , Femenino , Animales , Placenta/metabolismo , Quercetina/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Caspasa 3/metabolismo , Exposición por Inhalación , Estrés Oxidativo , Biomarcadores/metabolismo
17.
Int J Biol Macromol ; 263(Pt 1): 130283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378113

RESUMEN

Adsorption materials are a cost-effective and simple method for oil spill remediation, but their efficiency is limited by high crude oil viscosity. Additionally, non-degradable materials pose another risk of secondary pollution, such as microplastic debris. Here, an environmentally-friendly stereo-complex polylactide composite (SCC) aerogel were developed via water-assisted thermally induced phase separation. The SCC with 3 wt% carbon nanotubes had a hierarchical structure of micro/nanoscale pores and high content of stereo-complex crystallites (35.7 %). Along with the excellent water repellency (water contact angle: 157°), SCC aerogel was 2.7 times as resistant to hydrolysis than poly(l-lactide) aerogel (Ph = 13, 37 °C). Additionally, a maximum absorption capacity of 41.2 g g-1 and over 97 % oil/water separation efficiency after 10 cycles were obtained in low viscosity conditions; while in high viscosity conditions, it displayed excellent photothermal performance, reaching a surface temperature of 85 °C under 1 sunlight, reducing crude oil absorption time from 42 min to 60 s (97.6 %-time savings). Moreover, it facilitated continuous crude oil spill recovery under sunlight with an adsorption rate of 3.3 × 104 kg m-3 h-1. The SCC aerogel presents a potential route for utilizing solar energy in crude oil adsorption applications without additional environmental burden.


Asunto(s)
Nanotubos de Carbono , Petróleo , Poliésteres , Adsorción , Plásticos
18.
J Hazard Mater ; 468: 133814, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412802

RESUMEN

The oil industry's expansion and increased operational activity at older installations, along with their demolition, contribute to rising cumulative pollution and a heightened risk of accidental oil spills. The lesser sandeel (Ammodytes marinus) is a keystone prey species in the North Sea and coastal systems. Their eggs adhere to the seabed substrate making them particularly vulnerable to oil exposure during embryonic development. We evaluated the sensitivity of sandeel embryos to crude oil in a laboratory by exposing them to dispersed oil at concentrations of 0, 15, 50, and 150 µg/L oil between 2 and 16 days post-fertilization. We assessed water and tissue concentrations of THC and tPAH, cyp1a expression, lipid distribution in the eyes, head and trunk, and morphological and functional deformities. Oil droplets accumulated on the eggshell in all oil treatment groups, to which the embryo responded by a dose-dependent rise in cyp1a expression. The oil exposure led to only minor sublethal deformities in the upper jaw and otic vesicle. The findings suggest that lesser sandeel embryos are resilient to crude oil exposure. The lowest observed effect level documented in this study was 36 µg THC/L and 3 µg tPAH/L. The inclusion of these species-specific data in risk assessment models will enhance the precision of risk evaluations for the North Atlantic ecosystems.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Petróleo/toxicidad , Cáscara de Huevo , Ecosistema , Agua , Contaminantes Químicos del Agua/toxicidad
19.
Environ Sci Pollut Res Int ; 31(14): 21089-21106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379046

RESUMEN

Interactions between crude oil and its downstream products are crucial but complex. The main purpose of this study is to examine the risk spillover relationships between the crude oil futures market and the petrochemical downstream futures market in the context of the COVID-19 epidemic in China. By combining the dynamic conditional correlation-generalized autoregressive conditional heteroskedasticity (DCC-GARCH) model and the Diebold-Yilmaz spillover index based on time-varying parameter-vector autoregression (TVP-VAR-DY), we investigate the dynamic correlations between Shanghai crude oil futures (INE) and the downstream futures in China's petrochemical industry chain. At the same time, we also incorporate the representative global crude oil futures (BRENT and WTI) in our study as a comparative analysis. Our results show a significant positive correlation between three crude oil futures and China's downstream future products, with a more pronounced link observed between INE and the downstream futures market. Moreover, the correlation between crude oil futures and various downstream products exhibits heterogeneity; that is, direct derivatives of crude oil show higher sensitivity to price fluctuations compared to products with longer production chains. Furthermore, the spillover results indicate that the international crude oil futures, particularly BRENT, primarily function as spillover transmitters, while INE mainly serves as the recipient. In the post-pandemic period, the international crude oil market still exhibits a high spillover effect, and the spillover effect of INE to polyvinyl chloride, pure terephthalic acid, and bitumen futures increased, reflecting market recovery in China to some extent. These results provide potential insights for policymakers, financial institutions, industry participants, and investors, emphasizing the importance of enhanced risk management, diversified investment strategies, and attention to market dynamics.


Asunto(s)
COVID-19 , Petróleo , Humanos , China , Industrias , Pandemias
20.
Curr Environ Health Rep ; 11(1): 18-29, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38267698

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to assess the toxicological consequences of crude oil vapor (COV) exposure in the workplace through evaluation of the most current epidemiologic and laboratory-based studies in the literature. RECENT FINDINGS: Crude oil is a naturally occuring mixture of hydrocarbon deposits, inorganic and organic chemical compounds. Workers engaged in upstream processes of oil extraction are exposed to a number of risks and hazards, including getting crude oil on their skin or inhaling crude oil vapor. There have been several reports of workers who died as a result of inhalation of high levels of COV released upon opening thief hatches atop oil storage tanks. Although many investigations into the toxicity of specific hydrocarbons following inhalation during downstream oil processing have been conducted, there is a paucity of information on the potential toxicity of COV exposure itself. This review assesses current knowledge of the toxicological consequences of exposures to COV in the workplace.


Asunto(s)
Petróleo , Humanos , Petróleo/toxicidad , Hidrocarburos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...